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Dermatologist-like explainable AI enhances
melanoma diagnosis accuracy: eye-
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Artificial intelligence (AI) systems substantially improve dermatologists’
diagnostic accuracy for melanoma, with explainable AI (XAI) systems further
enhancing their confidence and trust in AI-driven decisions. Despite these
advancements, there remains a critical need for objective evaluation of how
dermatologists engage with both AI and XAI tools. In this study, 76 derma-
tologists participate in a reader study, diagnosing 16 dermoscopic images of
melanomas and nevi using an XAI system that provides detailed, domain-
specific explanations, while eye-tracking technology assesses their interac-
tions. Diagnostic performance is compared with that of a standard AI system
lacking explanatory features. Here we show that XAI significantly improves
dermatologists’ diagnostic balanced accuracy by 2.8 percentage points com-
pared to standardAI.Moreover, diagnostic disagreementswith AI/XAI systems
and complex lesions are associated with elevated cognitive load, as evidenced
by increased ocular fixations. These insights have significant implications for
the design of AI/XAI tools for visual tasks in dermatology and the broader
development of XAI in medical diagnostics.

Melanoma accounts for the majority of deaths attributed to skin can-
cer worldwide, with early detection and excision being crucial for a
favorable prognosis1. Explainable Artificial Intelligence (XAI) is a
growing field that has the potential to revolutionize the way derma-
tologists diagnose and treat skin conditions. XAI is an extension of
artificial intelligence (AI) that focuses on developing algorithms and
models that canprovide transparent and/or interpretableexplanations
for their decisions and predictions2–4. The twoprimary branches of XAI
techniques are (1) post-hoc algorithms that are designed to retro-
spectively explain the decisions from a given model, such as Grad-
CAM3 and others5,6, and (2) inherently interpretable algorithms that are

designed to be intrinsically understandable, such as logistic
regression7 and others8,9. A diagnosis assistance system requires
intuitive explanations tailored to dermatologists as they need to assess
the quality of the machine suggestions for each image they
diagnose10,11. A few recent dermatological XAI systems aim to close the
interpretability gap through the use of concept-bottleneck models12.
Such models are trained to predict the concepts that are used to dis-
tinguish between melanomas and nevi, such as the well-established
Derm7pt13. Lucieri et al. used the expert annotated concepts from the
PH214 andderm7pt15 datasets to create anXAI thatprovides lesion-level
explanations based on concept vectors16. Jalaboi et al. employed a
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convolutional neural network architecture that was designed to
include localisations into training on clinical images of skin lesions17.
Additionally, they composed an ontology of clinically established
terms to explainwhy the annotated regions are diagnostically relevant.
Chanda et al. extended on these works and introduced a concept-
bottleneckXAI thatwas trained to detect established characteristics to
distinguish between melanomas and nevi2.

In dermatology, XAI is used for skin cancer detection, where it can
highlight skin regions relevant to the diagnosis and/or provide textual
justifications for the prediction. XAI has the potential to improve the
accuracy and reliability of the diagnostic process in the healthcare
domain by improving user trust and acceptance18–21. Previous studies
with XAI in dermatology have shown that dermatologists’ diagnostic
confidence and trust in AI systems increase when using XAI compared
to traditional AI systems2,22. However, these findings were primarily
based on subjective measures, such as self-reported confidence levels
and trust ratings, which canbe influenced by various factors, including
individual biases and the desire to conform to perceived
expectations23,24.

Toprovide amore objective understandingof the impactofXAI in
dermatology, it is essential to investigate how dermatologists interact
with AI and XAI systemsduring their diagnostic process, particularly in
terms of their attention to the provided explanations, andwhether this
attention correlates with diagnostic accuracy. Eye tracking has been
shown to serve as a valuable tool in visual search patterns and asses-
sing cognitive load, which refers to the mental effort required to
process information and perform tasks25,26. The analysis of ocular
parameters, such as thenumber offixations andfixationdurations, can
provide insights into the cognitive demands placed on individuals
while performing tasks. For instance, in the context of dermatology,
fixation-based metrics offer indications of the level of interest or
confusion experienced by participants when evaluating pigmented
lesions27. Higher numbers of fixations may suggest uncertainty or dif-
ficulty in locating specific features, while longer fixation durations
could imply challenges in comprehending the content or identifying
relevant information28.

Dreiseitl et al. used eye-tracking technology to record and analyze
how dermatologists of different experience levels examined and
diagnosed digital images of pigmented skin lesions29. The study
involved 16 participants who were classified into three groups based
on their dermoscopy training. The eye-tracking system recorded the
gaze track and fixations of the participants while they examined 28
images. Experts were faster, more accurate, and more consistent in
their diagnosis than novices and intermediates. They also spent less
time and had fewer fixations on the images, indicating amore pattern-
oriented approach. The authors suggested that eye-tracking analysis
can be used to identify important diagnostic features and to optimize
training for less experienced dermatologists. This study, however, did
not involve an AI system. Kimeswenger et al. compared AI and board-
certified pathologists in analyzing histological whole-slide images
(WSI) using eye tracking30 and found significant differences in how the
AI and pathologists identified tumors, suggesting they prioritize dif-
ferent areas or features within the WSIs. It may indicate that the AI is
capable of detecting subtle features potentially overlooked by human
observers or that the AI is relying on features that are not intuitively
interpretable to humans. Their work, however, analyzed pathologists
and AI independently, rather than in tandem. Eye tracking technology
can precisely capture where and for how long dermatologists focus
their visual attention while using XAI systems. This facilitates a more
comprehensive exploration of the cognitive processes involved in
dermatologists’ interactions with XAI, providing insight into their
decision-making mechanisms and the impact of XAI on their diag-
nostic process.While the potential of XAI in dermatology is promising,
it remains uncertain to what extent dermatologists use or ignore these
technologies in their diagnostic process.

In this work, we address a research gap by employing eye-tracking
technology to examine how dermatologists of varying experience levels
interact with AI and XAI systems when diagnosing dermoscopic images.
By gaining insights into the visual patterns and diagnostic strategies
employed by dermatologists when utilizing AI for dermoscopy, we aim
to enhance the understanding of the potential benefits and challenges
associated with integrating AI into dermatological practice. To this end,
we conduct a two-phase reader study (Fig. 1a) with 50 dermatologists to
quantify the influence of classifier decisions in terms of dermatologists’
diagnostic accuracy and their attention towards the classifier explana-
tions. In the AI phase, the dermatologists diagnose dermoscopic images
of melanomas and nevi with AI support (Fig. 1b). In the XAI phase, they
diagnose the images from the previous phase with XAI support (Fig. 1c).
We leverage webcam-based eye-tracking to systematically analyze how
dermatologists allocate their visual attention to XAI explanations and
other components of the diagnostic process. To ensure the reliability
and validity of our findings from the webcam-based eye-tracking
experiments, we also conduct a validation study with an additional 25
dermatologists using a dedicated eye-tracking device, which offers
greater precision than a webcam-based tracker. By comparing the two
methods, we aim to establish the consistency of the dermatologists’
visual attention patterns and to address any potential discrepancies
between the two tracking systems. We show that XAI systems sig-
nificantly improve balanced diagnostic accuracy compared to standard
AI. Additionally, we find that diagnostic disagreements involving AI/XAI
systems and complex lesions are linked to elevated cognitive load, as
indicated by increased ocular fixations.

Results
Our XAI achieves good diagnostic accuracy
In our work, we aimed to investigate the interaction between derma-
tologists and an explainable artificial intelligence (XAI) system by
analyzing how it impacted diagnostic accuracy and visual attention
patterns. By leveraging both webcam-based and dedicated device-
based eye-tracking, we aimed to uncover insights into the cognitive
processes that dermatologists employ during skin cancer diagnosis,
specifically focusing on how they interact with the explanations pro-
vided by XAI systems.

In our study, we required a classifier that not only made accurate
predictions but also provided insights into the decision-making pro-
cess. We extended the explainable classifier introduced in Chanda
et al.2 in our study. In their study, the authors introduced an XAI that
provides domain-specific textual and region-based explanations for its
predictions. To achieve this, they trained a classifier on explanations
annotated by dermatologists. Therefore, the training set of their
classifier comprised exclusively annotated images, and consequently
its generalization performance on the diagnosis prediction between
melanoma and nevus was limited. To address this, we introduced an
additional output layer trained on both annotated and unannotated
images, thereby improving the generalization performance. Details
can be found in the Methods section.

Our XAI achieved a balanced accuracy of 86.5% (95% CI 83.2%,
90.0%) on the internal test set and 76.9% (95% CI 71.6%, 82.1%) on the
external test set. In comparison, a baseline ResNet50 classifier
achieved a balanced accuracy of 83.6% (95% CI 79.3%, 87.7%) on the
internal test set and 77.1% (CI 95% 71.8%, 82.3%) on the external test set.
Performance per characteristic is provided in Supplementary Fig. 1.

Thus, our XAI outperformed the baseline ResNet50 in internal test
set accuracy and showed comparable performance on the external
test set.

Dermatologists’ diagnostic accuracy increases with XAI over
AI alone
We evaluated the impact of providing predictions alone (AI phase)
versus providing explanations along with predictions (XAI phase) on
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the dermatologists’ diagnostic accuracy. To further explore the ben-
efits with XAI support over AI support, we conducted a correlation
analysis between the extent of improvement in diagnostic accuracy
and the dermatologists’ self-reported level of expertise in
dermoscopy.

Initially, we performed a combined analysis of both the webcam-
based study and the device-based validation study. The results showed
amean dermatologist balanced accuracy (macro average of sensitivity
and specificity) of 79.9% (95% CI 77.0–82.6%)with plain AI support and
82.7% (95% CI 80.3–85.0%) with XAI support (Fig. 2a, 2.8 percentage
points improvement, P = 0.013, two-sided paired t-test, n = 76 der-
matologists, Cohen’s d =0.29). Specifically, 34 dermatologists saw an
improvement in performance, 20 experienced a decrease, and no
change was observed for 22 dermatologists.

In the webcam-based study, the mean balanced accuracy was
77.8% (95% CI 74.3–81.3%) with AI support, increasing to 81.0% (95% CI
77.8–84.0%, 3.2% increase, P = 0.018, two-sided paired t-test, n = 51
dermatologists). In the device-based study, the mean balanced accu-
racywas slightly higher, at 84.0% (95%CI 80.0–88.0%) with AI support,
and increased to 86.3% (95% CI 83.5–88.5%) with XAI support. How-
ever, the improvement was not significant (P = 0.31, two-sided paired
t-test, n = 25 dermatologists).

We found no correlation between the dermatologists’ experience
levels and their increase in diagnostic accuracy with XAI over AI
(Spearman’s rank correlation −0.08, P =0.55, n = 61 dermatologists)

(Fig. 2b). Details on dermatologist accuracies are provided in Supple-
mentary Table 1.

Thus, providing XAI support resulted in a significant improve-
ment in dermatologists’ diagnostic accuracy compared to AI predic-
tions alone, though this improvement was not correlated with their
experience level.

Disagreementswith the classifier decisions correlatewith ocular
fixations
To determine the impact of dermatologist and classifier disagree-
ments on the diagnostic process, we analyzed the number of fixations
in cases where the dermatologist’s diagnosis differed from the pre-
diction of the classifier compared to cases where they aligned. Our
findings indicate that in both AI and XAI phases, the mean fixation
counts were higher when there was disagreement with the predictions
of the classifier.

In theAI phase, themeanfixation countwas 14.2 (95%CI 13.5–14.9)
for cases where the classifier and the dermatologist agreed, and 19.6
(95% CI 17.8–21.4) for cases where they disagreed (P < 0.001, two-
sided t-test, n_agreed = 644 cases, n_disagreed = 109 cases). Similarly,
in theXAI phase, themeanfixation countwas 16.7 (95%CI 15.9–17.5) for
cases of agreement and 22.7 (95% CI 20.2–25.1) for cases of disagree-
ment (P < 0.001, two-sided t-test, n_agreed = 658 cases, n_dis-
agreed = 95 cases) (Fig. 3a). The mean fixation duration was 309.0
milliseconds (SD = 30.2 milliseconds).

Fig. 1 | Schematic overview of the study design with AI and XAI prediction
examples. a Schematic overview of our two-phase reader study. Dermatologists
were asked to diagnose 16 dermoscopic images each, consisting ofmelanomas and
nevi. In the artificial intelligence (AI) phase, they were supported by an AI system
that provided the predicted diagnoses for the images and were asked to provide
their own diagnoses. In the explainable artificial intelligence (XAI) phase, they

received support by an XAI that showed not only the predicted diagnoses but also
the corresponding explanations. b An example dermoscopic image with the pre-
dicted diagnosis of the AI shown in the AI phase. cAn example dermoscopic image,
alongwith thepredicted diagnosis from theXAI, and the corresponding textual and
regional explanations provided during the XAI phase. Created in BioRender.
Chanda, T. (2025).
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To better understand these differences, we further analyzed the
results for the webcam-based study and the device-based study. In the
AI phase of the webcam-based study, the mean fixation count was 8.2
(95% CI 7.5–8.9) when there was agreement and 13.4 (95% CI 11.3–15.7)
when there was disagreement (P < 0.001, two-sided t-test,
n_agreed = 302 cases, n_disagreed = 51 cases). In the XAI phase, the
mean fixation count increased to 9.8 (95% CI 8.8–10.8) for agreements
and 17.1 (95% CI 13.9–20.6) for disagreements (P < 0.001, two-sided t-
test, n_agreed = 303 cases, n_disagreed = 50 cases).

The device-based study showed similar trends. During the AI
phase, the mean fixation count was 19.4 (95% CI 18.6, 20.3) for agree-
ments and 24.9 (95% CI 23.0–26.8) for disagreements (P < 0.001). In
the XAI phase, these values were 22.6 (95% CI 21.8–23.4) for agree-
ments and 28.7 (95% CI 26.4–31.4) for disagreements (P < 0.001, two-
sided t-test, n_agreed = 355 cases, n_disagreed = 45 cases). Distribu-
tions of the fixation data can be found in Supplementary Fig. 2.

We also analyzed cases where the AI/XAI prediction was wrong
but found no significant difference between the AI and XAI phases
(Supplementary Fig. 3).

In summary, disagreements betweendermatologists and classifier
predictions significantly increased the number of ocular fixations in
both AI and XAI phases across different study setups.

Ocular fixations are correlated with dermatologists’
experience levels
To assess the relationship between dermatologist experience levels
and their ocular fixations in the AI and XAI phases, we performed a
correlation analysis between the mean fixation count of each derma-
tologist and their experience in dermatology. Since we used mean
fixation counts per dermatologist, outlier removal using the Inter-
quartile Range (IQR) was conducted to ensure that the means accu-
rately reflected their typical behavior. Dermatologists’ experience
levels were collected via the following experience brackets: less than 1
year, 1 to 3 years, 5 to 10 years, and over 10 years. Our analysis revealed
a negative correlation of −0.44 (Spearman Correlation Coefficient;
P =0.002, n = 46 dermatologists) in the AI phase and −0.31 in the XAI
phase (Spearman Correlation Coefficient; P = 0.04, n = 46 dermatolo-
gists) (Fig. 3b).

To explore these findings in more detail, we conducted separate
analyses for the webcam-based study and the device-based study. In
the webcam-based study, we found no significant correlations

(r = −0.40, P =0.06 with AI; r =0.37, P =0.07 with XAI, Spearman Cor-
relation Coefficient; n = 23 dermatologists) between dermatologist
experience and the number of fixations, while the device-based study
showed a negative correlation of −0.78 (Spearman Correlation Coef-
ficient; P < 0.001, n = 23 dermatologists) with AI and −0.61 (Spearman
Correlation Coefficient; P =0.002, n = 23 dermatologists) with XAI. For
completeness, we have also provided the results obtained without the
exclusion of outliers in Supplementary Table 2.

Thus, dermatologist experience was negatively correlated with
ocularfixations during theAI phase and alsoduring theXAI phase,with
stronger correlations observed in the device-based study compared to
the webcam-based study.

Diagnostic disagreement between different dermatologists
correlates with ocular fixations
Toobtain insights into the relationshipbetweendiagnosticdifficulty of
the image and visual attention patterns, we assessed the change in the
number of fixations as the difficulty of the lesion increased. To esti-
mate diagnostic difficulty, we assigned a difficulty score to each image
based on the amount of disagreement between the dermatologists.
For this we calculated the entropy, which is a measure of impurity or
randomness in a set of labels. Higher entropy indicated greater dis-
agreement among dermatologists, and thus a higher difficulty score.
Our findings revealed a correlation of 0.14 (Spearman Correlation
Coefficient;P < 0.001,n = 753 images) between the number offixations
and diagnostic difficulty in the AI phase. However, no correlation was
observed during the XAI phase (r = 0.01, P =0.76, n = 753 ima-
ges) (Fig. 3c).

To further understand these results, we analyzed the data from
the webcam-based study and the device-based study separately. In the
webcam-based study, we observed a correlation coefficient of 0.24
(Spearman Correlation Coefficient; P <0.001, n = 353 images) between
the number of fixations and diagnostic difficulty during the AI phase
and a correlation of 0.13 (Spearman Correlation Coefficient; P =0.01,
n = 353 images) during the XAI phase. In the device-based study, we
observed a correlation coefficient of 0.11 (Spearman Correlation
Coefficient; P =0.02, n = 400 images) between the number of fixations
and diagnostic difficulty during the AI phase and a correlation of 0.13
(Spearman Correlation Coefficient; P =0.008, n = 400 images) during
the XAI phase. Distributions of diagnostic difficulty can be found in
Supplementary Fig. 4.

ba

Fig. 2 | Dermatologists’ diagnostic accuracy with AI and XAI support.
a Dermatologists’ balanced accuracies with artificial intelligence (AI) support and
explainable artificial intelligence (XAI) support (P = 0.013, two-sided paired t-test,
n = 76 participants). The y-axis represents a continuous scale from 0 to 100 but is
labeled at discrete intervals (e.g., 50, 60, etc.) for clarity. The gray lines between the
boxes connect the same dermatologist between the AI and XAI phases, while the
black lines indicate the means across all dermatologists. The horizontal line within
each box denotes the median value, and the white dot represents the mean. The
upper and lower box limits denote the 1st and 3rd quartiles, respectively, with the

whiskers extending to 1.5 times the interquartile range. b Numerical increase in
dermatologists’ diagnostic accuracy with XAI over AI (XAI phase accuracy minus AI
phase accuracy) (two-sided Spearman’s rank correlation −0.08, P =0.55, n = 61
dermatologists). Each point represents one dermatologist. The horizontal line
within each box denotes the median value, and the white dot represents the mean.
The upper and lower box limits denote the 1st and 3rd quartiles, respectively, with
the whiskers extending to 1.5 times the interquartile range. Source data are pro-
vided as a Source Data file.
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Thus, a slight correlation between the number of fixations and
diagnostic difficulty was found in the AI phase, varying between
webcam-based and device-based studies, but no consistent pattern
was observed in the XAI phase.

Discussion
Our work advances the understanding of the cognitive mechanisms in
interaction of dermatologists with both AI and XAI in the context of
melanoma diagnosis.We found that dermatologists aremore accurate
in their diagnoses when using XAI compared to plain AI. Additionally,
we observed increased fixation counts while handling complex cases
and when the predictions of the classifier diverge from the dermatol-
ogists’ diagnoses.

We observed a statistically significant increase in dermatologists’
diagnostic accuracy when supported by XAI compared to when being
supportedbyplainAI. Ourfindings of a significant effect are partially in
linewith the trendobserved in a studybyChanda et al.2 which reported

a numerically higher but non-statistically significant increase with XAI
over plain AI. A number of factorsmay account for this discrepancy. In
their study, participants were required to complete a number of
additional tasks, including the input of diagnostic confidence and trust
in the classifier decision, in addition to lesiondiagnosis. In comparison,
our study consisted of a single task, namely lesion diagnosis. Our study
also included a classifier that was slightly higher in terms of balanced
accuracy (86.5% this study vs. 81% in Chanda et al.2). Additionally, our
study included more precise information from the XAI, i.e., only the
most confident explanation was presented. In contrast, all predicted
explanations, including those with low classifier confidence, were
presented in the study by Chanda et al.Such a large amount of infor-
mation may have led to confusion and difficulty in interpretation.
Furthermore, presenting the most confident explanation means that
the explanation is more likely to be correct.

In the device-based study, where the diagnostic environment was
more controlled, the balanced accuracy with XAI support was

a b

c

Fig. 3 | Fixationpatterns and casesofdisagreementbetweendermatologist and
classifier. a Differences in fixation counts in cases where the dermatologist and
classifier agreed (P < 0.001, two-sided t-test, n_agreed=316 cases, n_disagreed = 52
cases) and disagreed (P < 0.001, two-sided t-test, n_agreed = 317 cases, n_dis-
agreed = 51 cases). The gray lines between the boxes connect the same dermatol-
ogist between the artificial intelligence (AI) and explainable artificial intelligence
(XAI) phases, and the black lines connecting the boxes indicate themeans across all
dermatologists. The horizontal line on each box denotes the median value and the
white dot denotes themean. The upper and lower box limits denote the 1st and 3rd
quartiles, respectively, and the whiskers extend from the box to 1.5 times the
interquartile range. b Distributions of the number of fixations across different

experience levels. Fixations are negatively correlated with experience levels (two-
sided Spearman Correlation Coefficient, P =0.002, n = 61 dermatologists). The
horizontal lineoneachboxdenotes themedian value and thewhite dotdenotes the
mean. Theupper and lowerbox limits denote the 1st and 3rdquartiles, respectively,
and the whiskers extend from the box to 1.5 times the interquartile range.
cRelationship between diagnostic difficulty and number offixations. Difficult cases
are associated with a higher number of fixations (two-sided Spearman Correlation
Coefficient; P <0.001, n = 753 images). Data are presented as mean values and
bootstrapped confidence intervals derived from 1000 samples. Source data are
provided as a Source Data file.
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numerically higher than with plain AI support. However, this
improvement was not significant, which may be attributed to the
smaller sample size (n = 25). It is noteworthy that dermatologist
accuracies were generally higher in the device-based study compared
to the webcam-based study. This suggests that the controlled envir-
onment in which the device-based study was conducted may have
provided a more conducive setting for accurate decision-making or a
different selection of participants. The increase in diagnostic accuracy
with XAI over plain AI could lead to enhanced patient outcomes,
advancing dermatological care.

Eye-tracking analysis provided further insights into the cognitive
processes underlying dermatologists’ interactions with AI and XAI
systems. Our results showed that the number of fixations was sig-
nificantly higher when there was a disagreement between the derma-
tologist’s diagnosis and the prediction of the classifier. This suggests
that dermatologists spend more time and effort examining cases
where there is a discrepancy, reflecting adeeper cognitive engagement
with challenging cases. The higher fixation counts in these scenarios
were observed in both the AI and XAI phases, indicating that the pre-
sence of explanations in XAI did not reduce the cognitive load but
perhaps redirected it towards understanding the provided justifica-
tions. When encountering a classifier decision they disagree with,
dermatologists might engage in a more in-depth analysis, revisiting
specific details or searching for inconsistencies. As suggested by
Kempt et al. dermatologists can leverage classifier predictions as sec-
ond opinions to validate or reconsider their initial diagnoses, leading
to more informed decision-making31. The relatively lower number of
fixations when the dermatologist’s diagnosis aligned with the predic-
tion of the classifier suggests that the dermatologist might feel more
confident and require less re-evaluation when their diagnosis is sup-
ported by the classifier. The agreement likely provides a form of vali-
dation that reduces the need for extensive additional examination. In
practice, implementing AI interfaces that dynamically provide addi-
tional clarifications upon detecting user hesitation or prolonged fixa-
tions on specific lesion areas may be worth exploring.

Our findings also revealed discrepancies in absolute fixation
numbers between the webcam-based and the device-based study.
However, the relative trend remained consistent. For example, in both
systems, fixation numbers were higher for disagreement compared to
agreement (e.g., for AI: 8.2 vs. 19.2 in the webcam-based study and 13.4
vs. 24.9 in the device-based study; for XAI: 9.8 vs. 22.6 in the webcam-
based study and 17.1 vs. 28.7 in the device-based study). This con-
sistency in trends suggests that while absolute values differed due to
variations in tracking accuracy, the comparative effects observed
across conditions remained meaningful.

We found a negative correlation between fixation counts and
dermatologist experience levels. This suggests that experienced der-
matologists develop more efficient search patterns and require less
time to visually inspect lesions compared to their less experienced
colleagues. This efficiency is likely due to their familiarity and expertise
in rapidly identifying key diagnostic features. This finding aligns with
similar studies that show how experts develop efficient visual search
strategies, leading to fewer fixations and shorter fixation duration26,29.
However, different training backgrounds may also play a role in how
dermatologists develop efficient fixation patterns, a factor not con-
sidered in this analysis. Training programs for dermatologists might
benefit from incorporating visual fixation training, helping less
experienced dermatologists develop more effective scanning techni-
ques. Incorporating “eye movement modeling examples” where trai-
nees view expert gaze patterns in real time or through replay can help
novices internalize expert search strategies. We did not find any cor-
relation between dermatologists’ experience levels and their benefit
with XAI over plain AI, in contrast to the positive correlation found in
Chanda et al.2. In their study, experiencewas defined as their frequency
of use and involvement in dermoscopy, i.e., rare use, occasional use,

regular use, regular use and involvement in science. In this study, we
measured experience by their actual years of experience as derma-
tologists regardless of their frequency of use, whichmight explain the
difference in findings between the two studies.

We found a positive correlation between the number of fixations
and the diagnostic difficulty of the respective cases, suggesting that
participants spent more time visually inspecting areas containing
features that were challenging to diagnose. This aligns with the notion
that increased cognitive load during visual tasks leads to more fixa-
tions and longer fixation durations25.

One limitation of our study lies in the inherent drawbacks of
webcam-based eye tracking systems, which often exhibit diminished
reliability and accuracy compared to dedicated eye tracking devices,
consequently generating data with reduced spatial precision. How-
ever, to mitigate this, we also used a dedicated eye tracking device to
validate the results obtained from the webcam-based tracker. While
this allowed us to cross-verify our findings, eye tracking technology
cannot measure why a user looked at a certain element, as it provides
objective, quantitative data but does not capture the subjective rea-
sons behind visual attention32. Moreover, it is plausible that the inter-
pretation of the images during the initial phasemay have impacted the
subsequent interpretation in the second phase. However, studies on
visual recognition memory have shown that physicians’ ability to
recognize previously encountered medical images is limited33–36. Even
though these studies are based on radiologic imaging rather than
dermatology, it’s likely that over time, dermatologists do not retain
strong memory of medical images, and the interpretation of an image
does not significantly influence their interpretation upon re-
examination. Furthermore, our work does not resemble real-world
clinical settings where the dermatologist has access to relevant patient
metadata. Our findings may also not apply to real-world clinical set-
tings where the majority of cases are clearly benign, as our study only
included biopsy-verified lesions. Additionally, the potential influence
of dermatologist diligence and attention levels during the phases on
attained accuracy levels poses a limitation, where increased diligence
may inflate or deflate accuracy on one or both of the phases inde-
pendently of the AI system itself.

The findings of our study demonstrate the ability of XAI to enhance
dermatologists’diagnostic accuracy and also enhance the understanding
of the cognitive mechanisms involving dermatologists’ interactions with
AI when diagnosing melanoma. However, to conclusively establish the
benefit of XAI over plain AI models in diagnosing melanoma, further
prospective studies in real-world clinical environments should be con-
ducted. We used fixation counts and fixation durations as objective
measures to examine dermatologists’ visual attention when interacting
with AI-assisted diagnostic tools. However, fixation data alone cannot
comprehensively capture the intricacies of clinical reasoning and diag-
nostic strategies. Therefore, future workmay combine eye-tracking data
with qualitative assessments, such as think-aloud protocols or ques-
tionnaires, to more fully understand the cognitive mechanisms of
dermatologist-AI interactions. Future studies may also focus on the
impact of XAI on cognitive load and trust in AI-assisted diagnosis.

Methods
Inclusion and ethics
Ethics approval was obtained from the ethics committee at the Tech-
nical University of Dresden (BO-EK-53012021), the Friedrich-Alexander
University Erlangen-Nuremberg (69_21 Bc), the LMUMunich (21-0182),
the University of Regensburg (20-2190-103), the Julius-Maximilians
University Wuerzburg (293/20_z) and from the University Hospitals
Mannheim (2020-656N) and Essen (20-9784-BO). Informed consent
was collected from all participants. We did not collect any data on sex
and gender of the clinicians participating in our reader study. As
compensation, we offered them the opportunity to be credited as a
collaborator of our work. The dermoscopic skin lesion image used in
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Fig. 1 is part of the open-source HAM10k dataset, which is already
published (reference cited).

Datasets
In our work, we utilized dermoscopic skin lesion images ofmelanomas
and nevi from the HAM1000037 and a multi-clinic prospectively-col-
lected dataset. To minimize label noise, we selected only the biopsy-
verified lesions from HAM10000 (n = 1981 unique lesions). The
prospectively-collected dataset (n = 1654 unique lesions) consisted
entirely of biopsy-verified lesions. Since both datasets contained
multiple images of the same lesion, we randomly selected only one
image per lesion and excluded the rest. Approximately 22% of the
lesions in the entire dataset were melanomas and 78% were nevi.

The entire dataset was randomly divided into training (80%),
validation (10%), and test sets (10%). To further assess generalizability,
we incorporated an external test set comprising images from a single
clinic within the prospectively-collected dataset, ensuring these ima-
ges were excluded from the other sets. We randomly selected 48
images (3 groups with 16 images each) from the test set for the reader
study. Each group consisted of 8 melanomas and 8 nevi.

Participants
We recruited dermatologists with varying levels of experience ranging
from assistant dermatologists to clinic directors. Invitations were sent
via email through our collaboration network, utilizing public contact
information from the International Society for Dermoscopy website
and university clinic webpages. Additionally, we included dermatolo-
gists fromprivate clinics. Participant numbers and flow is illustrated in
Supplementary Fig. 5.

Classifier
We adapted the explainable classifier introduced by Chanda et al.2,
which explains its decisions using established visual characteristics.
However, its generalization performance was insufficient due to reli-
ance on annotated training data. To address this, we modified the
classifier to learn from both annotated and unannotated images.

We added two prediction heads to the output layer: a diagnosis
prediction head and a characteristics prediction head. For images
without annotated characteristics, only the diagnosis loss is optimized.
For images with annotated characteristics, we optimized the diagnosis
loss, the characteristics loss, and the attention loss defined in Chanda
et al.2. This approach increased the amount of training data and
improved generalization performance.

Study design and eye tracking
Our study, conducted in two phases betweenDecember 2023 and June
2024, involved monitoring the eye movements of participants using a
web-based eye-tracking software. Additionally, a separate set of par-
ticipants had their eye movements tracked using a dedicated eye-
tracking device. The study included three groups of participants, with
each group reviewing 16 mutually exclusive dermoscopic images (8
melanomas and 8 nevi). This image limit was based on feedback from a
pilot study, which indicated thatmore than 20 images led to increased
participant fatigue, so 16 images per group were selected to maintain
optimal engagement and accuracy.

Web-based study
Initially, we used the web-based software realeye.io version 9.0, which
tracks eye movements using a webcam video feed. Participants were
first required to complete a calibration step to ensure accurate tracking.
Sincewebcam-based eye tracking is sensitive to lighting conditions, they
were instructed to keep a light source in front of them and remove any
light sources behind them. They were also asked to keep their head
position fixed during the session. The software automatically pauses the
session and alerts the user if their head position deviates. A fixation was

recorded whenever a participant’s eyes focused on a specific point for
100–300 milliseconds, representing a clear point of attention. The col-
lected data included time-stamped coordinates indicating where on the
screen the participant’s attention was directed.

AI Phase. In this phase, participants were asked to diagnose 16 der-
moscopic images of melanomas and nevi, supported by an AI system
that provided predictions for each image (nevus or melanoma)
(Fig. 1b). They received both the images and the AI diagnoses simul-
taneously. They received instructions on setting up the study, includ-
ing the required calibration steps. The distribution of melanomas and
nevi was not disclosed to them. Participants were asked to complete
the task within two weeks. We randomly divided the participants into
three groups, with each group receiving 16 random images (8 mela-
nomas and 8 nevi) from the test set. The image sets for each group
were mutually exclusive to ensure a broad coverage of images. Parti-
cipants were informed that the task would consume approximately 10
to 12min to complete. We did not set an upper limit on completion
time for exclusion, as certain complex cases might require more time
todiagnose. Participantswere allowed topauseand resume theirwork,
so a longer completion time did not necessarily indicate insincere
efforts, although this did not happen. Individuals who withdrew in the
middle of the study were excluded from the analyses. 53 dermatolo-
gists participated in this phase and completed the task.

XAI Phase. In the XAI phase, we incorporated the 53 participants who
successfully concluded the AI phase. In this phase, the participants
were asked to diagnose the same 16 dermoscopic images of melano-
mas and nevi. They were supported by an XAI system that provided
predictions for each image, as well as explanations for the predictions
(Fig. 1c). They received both the images and the XAI diagnoses and
explanations simultaneously. The explanations consisted of the char-
acteristics that are relevant in diagnosing melanoma/nevus including
polygon-based region indications of the detected characteristics. We
ensured a minimum two-week interval between completing the AI
phase and initiating the XAI phase, and we did not disclose that these
were the same lesions from the preceding phase. The average interval
period was 3 weeks. Similar to the AI phase, participants were
instructed to complete the task within a two-week timeframe. Partici-
pants were presented with images from the AI phase in the same
sequence, along with the diagnosis of the AI for the respective lesion
(nevus or melanoma) and its explanation for the prediction. Partici-
pantswere informed that the taskwould consumeapproximately 10 to
12min to complete. Three participants failed to complete this phase
within the stipulated deadline, resulting in a total of 50 participants.

Onsite validation. To validate the results of the web-based study, we
conducted an additional onsite validation study using a dedicated eye-
tracking device (Pupil Labs Core). This setting was identical to the
previous AI and XAI phases but incorporated the use of a dedicated
eye-trackingdevice insteadofwebcam-based eye tracking. A total of 25
dermatologists participated in this onsite validation study. They were
asked to complete both the AI and XAI tasks while wearing the dedi-
cated device.

The protocol for this phase mirrored the web-based study,
including the 16 dermoscopic images (8 melanomas and 8 nevi), and
the presentation of the diagnosis of the AI in the AI phase and the
diagnosis and explanations of the AI in the XAI phase. Similar to the
web-based study, we ensured aminimumof two weeks between the AI
and XAI phases.

The onsite validation phase was necessary to address concerns
and potential limitations associated with the web-based eye-tracking
study. First, the precision and accuracy of webcam-based eye tracking
can be significantly lower than that of dedicated eye tracking devices.
Webcams are more susceptible to variations in lighting conditions,
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user positioning, and other environmental factors, which can intro-
duce noise and reduce the quality of the collected data. By using a
dedicated device in a controlled onsite setting, we aimed to rule out
these potential sources of error and ensure the robustness of our
findings. Another concern was the potential for webcam-related
inconsistencies. Different webcam models used by the participants
might have influenced the performance of the web-based eye-tracking
software, leading to variability in data quality. The onsite validation
using a standardized device provided a consistent and controlled
environment, allowing us to verify that the eye-tracking data was reli-
able and not confounded by these variables.

Software
All code was written in Python (3.9.9). PyTorch (1.10.0), PyTorch
Lightning (1.5.10), Albumentations (1.0.3), NumPy (1.22.2), Pandas
(1.4.0), SciPy (1.8.0), OpenCV (4.5.5), Scikit-learn (1.1.0), Matplotlib
(3.1.1), and Seaborn (0.11.2) were used for image processing, model
development and training, data analysis, and visualization.

Statistics and reproducibility
The primary endpoint was to compare the dermatologists employing
AI and XAI with respect to their balanced accuracy scores. All pairwise
significance testing was performed using the two-sided paired t-test.
To calculate confidence intervals, we utilized the bootstrapping
method with 10,000 samples and a random seed of 42 each time the
confidence interval was calculated. No formal statistical methods were
used to estimate the minimum sample size for the study. Instead, the
approach was to collect as many samples as possible to maximize the
robustness of the analysis. A sample size greater than 25 was con-
sidered sufficient based on general statistical guidelines for achieving
approximate normality in many parametric tests. The number of der-
matologists (53 in the web-based study, 25 in onsite validation) was
driven by recruitment feasibility and alignment with similar reader
studies inmedical AI evaluation. Blindingwas not relevant to our study
because the investigators neither provided diagnoses nor influenced
them. The participants were not aware of the existence of grouping.
The diagnoses weremade entirely by participants, and all eye-tracking
data were recorded automatically, minimizing any potential bias from
investigator knowledge of group allocation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in our study, which includes the pseudonymized
reader study data and the fixations data are accessible on Figshare:
https://figshare.com/s/5f0b0f18c20f0a850dc7. The HAM10000
dataset37 is publicly available and can be accessed here: https://
dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/
DBW86T. External research projects may request access to the
prospectively-collected additional dataset used in our study, specifi-
cally for the purpose of advancing skin (cancer) research. Access is
granted following an application and approval process managed by
the SCP Data Protection Committee, which evaluates requests based
on criteria such as alignment with patient consent, a valid ethics vote,
and other relevant requirements (i.e., non-commercial (skin) cancer
research). All remaining data is publicly available. Commercial use of
the data is prohibited. All remaining data supporting this work are
available in the main article, supplementary information, or source
data file. Source data are provided with this paper.

Code availability
The customcode developed in thiswork is accessible at https://github.
com/DBO-DKFZ/EyeTracking38.
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